organic compounds

572 Friedel pairs

Flack parameter: -0.07 (11)

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-3-[(2-Methyl-4-nitrophenyl)iminomethyl]-1-benzothiophene

Hasan Inaç,^a Necmi Dege,^b* Sümeyye Gümüş,^c Erbil Ağar^c and Mustafa Serkan Soylu^d

^aKırıkkale University, Faculty of Education, Department of Elementary Education, Science Teacher Training Programme, 71451 Kırıkkale, Turkey, ^bOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, ^cOndokuz Mayıs University, Arts and Sciences Faculty, Department of Chemistry, 55139 Samsun, Turkey, and ^dGiresun University, Faculty of Arts and Sciences, Department of Physics, 28100 Giresun, Turkey Correspondence e-mail: necmisamsun@gmail.com

Received 29 December 2011; accepted 3 January 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.037; wR factor = 0.089; data-to-parameter ratio = 11.0.

In the title conpound, $C_{16}H_{12}N_2O_2S$, the 1-benzothiophene residue and the substituted benzene ring are oriented at a dihedral angle of 53.36 (6)°. The molecular conformation features a short $C-H \cdots N$ contact. There are no significant intermolecular contacts.

Related literature

For the biological activity of Schiff bases, see: Barton et al. (1979); Ingold (1969); Layer (1963). For industrial applications of Schiff bases, see: Taggi et al. (2002). For chemical properties of Schiff bases, see: Avdoğan et al. (2001). For related structures, see: Ağar et al. (2010); Ceylan et al. (2011); Dege et al. (2006); Demirtaş et al. (2009); Tecer et al. (2010).

Experimental

Crystal data

 $C_{16}H_{12}N_2O_2S$ $M_{\rm w} = 296.34$ Monoclinic, P2 a = 7.6224 (4) Å b = 7.9139 (4) Å c = 11.7536 (5) Å $\beta = 91.341 \ (4)^{\circ}$

V = 708.82 (6) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 0.23 \text{ mm}^{-1}$ T = 296 K $0.17 \times 0.15 \times 0.12 \ \mathrm{mm}$

Data collection

Oxford Diffraction SuperNova Single source at offset diffractometer with an Eos	Diffraction, 2009) $T_{min} = 0.563, T_{max} = 1.000$ 2851 measured reflections
Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Oxford	108 independent reflections 1870 reflections with $I > 2\sigma(I)$ $R_{int} = 0.013$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.089$	$\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.05	$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$
2108 reflections	Absolute structure: Flack (1983),

Table 1

191 parameters

1 restraint

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C5−H5···N1	0.93	2.54	3.093 (4)	118

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: WinGX (Farrugia, 1997) and SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: OLEX2, WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

The authors thank Ondokuz Mayis University and the Giresun University Research Fund for financial support of this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5774).

References

- Ağar, A., Tanak, H. & Yavuz, M. (2010). Mol. Phys. 108, 1759-1772.
- Aydoğan, F., Öcal, N., Turgut, Z. & Yolaçan, C. (2001). Bull. Korean Chem. Soc. 22, 476-480.
- Barton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol. 2. Oxford: Pergamon.

Ceylan, Ü., Tanak, H., Gümüş, S. & Ağar, E. (2011). Acta Cryst. E67, o2004. Dege, N., Şekerci, M., Servi, S., Dinçer, M. & Demirbaş, Ü. (2006). Turk. J. Chem. 30, 103-108.

- Demirtaş, G., Dege, N., Şekerci, M., Servi, S. & Dincer, M. (2009). Acta Cryst. E65, 01668.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Ingold, C. K. (1969). In Structure and Mechanism in Organic Chemistry, 2nd ed. Ithaca, New York: Cornell University Press.
- Layer, R. W. (1963). Chem. Rev. 63, 489-510.
- Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626-6635.
- Tecer, E., Dege, N., Zülfikaroğlu, A., Şenyüz, N. & Batı, H. (2010). Acta Cryst. E66, o3369-o3370.

supplementary materials

Acta Cryst. (2012). E68, o361 [doi:10.1107/S1600536812000190]

(E)-3-[(2-Methyl-4-nitrophenyl)iminomethyl]-1-benzothiophene

H. Inaç, N. Dege, S. Gümüs, E. Agar and M. S. Soylu

Comment

Schiff bases, *i.e.*, compounds having a double C=N bond, are used as starting materials in the synthesis of important drugs, such as antibiotics and antiallergic, antiphlogistic, and antitumor substances (Barton *et al.*, 1979; Layer, 1963; Ingold 1969). On the industrial scale, they have a wide range of applications, such as dyes and pigments (Taggi *et al.*, 2002). Schiff bases have also been employed as ligands for the complexation of metal ions (Aydoğan *et al.*, 2001).

The dihedral angle between the C10—C15 benzene and the C1—C9/S1 benzothiophene ring is 53.36 (6)°. The length of the C8=N1 double bond is 1.271 (3) Å, slightly shorter than standard 1.28 Å value of a C=N double bond and consistent with related structures (Ağar *et al.*, 2010; Tecer *et al.*, 2010; Ceylan *et al.* 2011; Demirtaş *et al.*, 2009).

In the compound, N—O bond distances are 1.218 (4) Å for N2—O1 and N2—O2. The O1—N2—O2 bond angle is 123.4 (3)°. The C1—S1 and C9—S1 bond distances are 1.738 (3) Å and 1.709 (3) Å, respectively. The C—S bond distances are compatible with the literature (Dege *et al.* 2006; Demirtaş *et al.*, 2009).

Experimental

The compound (*E*)-1-(1-benzothiophen-3-yl)-*N*-(2-methyl-4-nitrophenyl)methanimine was prepared by refluxing a mixture of a solution containing 1-benzothiophene-3-carbaldehyde (0.0102 g 0.063 mmol) in 20 ml ethanol and a solution containing 2-Methyl-4-nitroaniline (0.0095 g 0.063 mmol) in 20 ml ethanol. The reaction mixture was stirred for 1 h under reflux. The crystals of(*E*)-4-((benzo[*b*]thiophen-3-ylmethylene)amino)-3-methylbenzoic acid suitable for X-ray analysis were obtained from ethylalcohol by slow evaporation (yield = 63%; m.p: 153–155°C).

Refinement

All hydrogen atoms were positioned geometrically with C—H = 0.93 Å and $U_{iso}(H)=1.2U_{eq}(C)$ or with C—H = 0.960 Å and $1.5U_{eq}(C_{methyl})$.

Figures

Fig. 1. The asymmetric unit of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

(E)-3-[(2-Methyl-4-nitrophenyl)iminomethyl]-1-benzothiophene

Crystal data	
$C_{16}H_{12}N_2O_2S$	F(000) = 308
$M_r = 296.34$	$D_{\rm x} = 1.388 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, P2 ₁	Mo <i>K</i> α radiation, $\lambda = 0.7107$ Å
Hall symbol: P 2yb	Cell parameters from 1356 reflections
a = 7.6224 (4) Å	$\theta = 3.2 - 27.7^{\circ}$
b = 7.9139 (4) Å	$\mu = 0.23 \text{ mm}^{-1}$
c = 11.7536 (5) Å	T = 296 K
$\beta = 91.341 \ (4)^{\circ}$	Prism, brown
V = 708.82 (6) Å ³	$0.17\times0.15\times0.12~mm$
Z = 2	

Data collection

Oxford Diffraction SuperNova Single source at offset diffractometer with an Eos detector	2108 independent reflections
Radiation source: SuperNova (Mo) X-ray Source	1870 reflections with $I > 2\sigma(I)$
mirror	$R_{\rm int} = 0.013$
Detector resolution: 16.0454 pixels mm ⁻¹	$\theta_{\text{max}} = 27.8^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$
ω scans	$h = -4 \rightarrow 9$
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)	$k = -10 \rightarrow 5$
$T_{\min} = 0.563, T_{\max} = 1.000$	$l = -15 \rightarrow 14$
2851 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.089$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0369P)^{2} + 0.1426P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{max} < 0.001$
2108 reflections	$\Delta \rho_{max} = 0.15 \text{ e } \text{\AA}^{-3}$
191 parameters	$\Delta \rho_{min} = -0.14 \text{ e } \text{\AA}^{-3}$
1 restraint	Absolute structure: Flack (1983), 572 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.07 (11)

Special details

Experimental. CrysAlis PRO (Oxford Diffraction, 2009)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ \boldsymbol{z} х y 0.0487(7) C1 0.7745 (4) 0.7800 (4) 0.3597 (2) C2 0.9349(4)0.8478(4)0.3262(3)0.0621 (8) H2 0.9650 0.8497 0.2500 0.075* C3 1.0455 (4) 0.9109 (5) 0.0662 (9) 0.4081 (3) H3 1.1529 0.079* 0.9561 0.3876 C4 0.9999 (4) 0.9087 (5) 0.5225 (3) 0.0591 (8) H4 0.9545 0.071* 1.0768 0.5768 C5 0.8438(4)0.8401(4)0.5565 (2) 0.0491(7)Н5 0.8165 0.8377 0.6332 0.059* C6 0.7263 (4) 0.7740(3) 0.4744(2)0.0444 (6) C7 0.5540(3) 0.6999 (5) 0.4864(2)0.0488 (6) C8 0.4620(3) 0.6719 (4) 0.5914 (2) 0.0512 (7) H8 0.3469 0.6330 0.5868 0.061* C9 0.4821(4)0.6556(4)0.3838(2)0.0585 (8) Н9 0.3708 0.6083 0.3759 0.070* C10 0.7870(2) 0.0497 (7) 0.4313 (3) 0.6683 (4) C11 0.2601 (4) 0.7284(4)0.7959(2) 0.0597 (8) H11 0.2086 0.78880.072* 0.7360 C12 0.1660 (4) 0.6983 (5) 0.8939(2) 0.0639 (8) H12 0.0516 0.7373 0.9004 0.077* C13 0.2467 (4) 0.6093 (4) 0.9806(2) 0.0603 (9) C14 0.4166 (4) 0.5529 (5) 0.9747 (2) 0.0614 (8) H14 0.074* 0.4677 0.4944 1.0355 C15 0.5110 (4) 0.5831 (4) 0.8783 (2) 0.0539 (8) C16 0.5212 (6) 0.6974 (4) 0.8702 (3) 0.0789(11) H16A 0.7464 0.5045 0.9453 0.118* H16B 0.7657 0.6034 0.8307 0.118* H16C 0.4162 0.6986 0.8293 0.118* N1 0.6980(4) 0.68930 (16) 0.5308 (3) 0.0527 (6) N2 0.1479 (5) 0.5769 (5) 1.0843 (3) 0.0851 (10) 01 0.2209 (5) 0.5011 (5) 1.1621 (2) 0.1246 (13) O2 -0.0032(4)0.6264 (5) 1.0876(2) 0.1153 (14) **S**1 0.61283 (11) 0.69395 (13) 0.27057 (6) 0.0641 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0627 (17)	0.0399 (16)	0.0435 (14)	0.0049 (13)	0.0028 (12)	0.0020 (13)
C2	0.077 (2)	0.055 (2)	0.0559 (18)	-0.0021 (18)	0.0215 (15)	-0.0005 (16)
C3	0.0635 (19)	0.060 (2)	0.075 (2)	-0.0075 (17)	0.0136 (17)	0.0057 (18)
C4	0.0594 (17)	0.057 (2)	0.061 (2)	-0.0096 (16)	-0.0056 (15)	0.0006 (16)
C5	0.0591 (17)	0.0436 (16)	0.0445 (15)	-0.0019 (14)	-0.0013 (12)	0.0024 (14)
C6	0.0537 (15)	0.0366 (15)	0.0431 (14)	0.0046 (12)	0.0027 (11)	0.0028 (12)
C7	0.0583 (15)	0.0451 (16)	0.0430 (12)	-0.0049 (15)	-0.0015 (10)	0.0052 (16)
C8	0.0521 (14)	0.0483 (18)	0.0533 (15)	-0.0074 (15)	0.0006 (11)	0.0051 (16)
C9	0.0659 (18)	0.059 (2)	0.0505 (15)	-0.0105 (16)	-0.0039 (13)	0.0039 (15)
C10	0.0571 (15)	0.0471 (18)	0.0447 (13)	-0.0116 (15)	-0.0014 (11)	-0.0015 (14)
C11	0.0644 (18)	0.062 (2)	0.0524 (15)	-0.0003 (16)	-0.0018 (13)	0.0056 (16)
C12	0.0562 (16)	0.071 (2)	0.0654 (17)	-0.002 (2)	0.0102 (13)	-0.013 (2)
C13	0.074 (2)	0.067 (2)	0.0397 (15)	-0.0203 (16)	0.0091 (14)	-0.0096 (15)
C14	0.077 (2)	0.063 (2)	0.0440 (16)	-0.0119 (17)	-0.0038 (15)	-0.0017 (15)
C15	0.0631 (18)	0.058 (2)	0.0409 (15)	-0.0080 (14)	-0.0032 (13)	0.0020 (14)
C16	0.069 (2)	0.101 (3)	0.067 (2)	0.011 (2)	-0.0075 (17)	0.014 (2)
N1	0.0554 (12)	0.0593 (15)	0.0433 (11)	-0.0099 (15)	0.0006 (9)	0.0055 (15)
N2	0.100 (2)	0.103 (3)	0.0538 (18)	-0.034 (2)	0.0222 (17)	-0.0200 (18)
01	0.149 (3)	0.169 (4)	0.0565 (16)	-0.017 (3)	0.0217 (17)	0.029 (2)
O2	0.096 (2)	0.175 (4)	0.0766 (17)	-0.027 (2)	0.0362 (15)	-0.0328 (19)
S1	0.0847 (5)	0.0675 (5)	0.0399 (3)	-0.0104 (5)	-0.0024 (3)	-0.0013 (4)
Geometric p	arameters (Å, °)					
C1-C2		1 401 (4)	C10-	-C11	1 39	5 (4)
C1 - C6		1 406 (3)	C10-	-C15	1.39	5 (4)
C1—S1		1.738 (3)	C10-	-N1	1 411 (3)	
C2—C3		1.359 (5)	C11–	-C12	1 391 (4)	
С2—Н2		0.9300	C11—H11		0 9300	
C3—C4		1.397 (5)	C12-	-C13	1.37	3 (5)
С3—Н3		0.9300	C12—H12		0.9300	
C4—C5		1.376 (4)	C13—C14		1.373 (5)	
C4—H4		0.9300	C13—N2		1.470 (4)	
С5—С6		1.403 (4)	C14	C15	1.37	7 (4)
С5—Н5		0.9300	C14	-H14	0.93	00
C6—C7		1.448 (4)	C15–	C16	1.50	8 (4)
С7—С9		1.359 (3)	C16–	-H16A	0.96	00
С7—С8		1.450 (3)	C16–	-H16B	0.96	00
C8—N1		1.271 (3)	C16–	-H16C	0.96	00
С8—Н8		0.9300	N2—	01	1.21	8 (4)
C9—S1		1.709 (3)	N2—	02	1.21	8 (4)
С9—Н9		0.9300				

C2-C1-C6

C2-C1-S1

C6—C1—S1	111.6 (2)	C12-C11-C10	120.3 (3)
C3—C2—C1	118.3 (3)	C12—C11—H11	119.8
C3—C2—H2	120.9	C10-C11-H11	119.8
C1—C2—H2	120.9	C13—C12—C11	118.2 (3)
C2—C3—C4	120.8 (3)	C13—C12—H12	120.9
С2—С3—Н3	119.6	C11—C12—H12	120.9
С4—С3—Н3	119.6	C12—C13—C14	122.4 (3)
C5—C4—C3	121.4 (3)	C12—C13—N2	118.4 (3)
С5—С4—Н4	119.3	C14—C13—N2	119.2 (3)
C3—C4—H4	119.3	C13—C14—C15	119.8 (3)
C4—C5—C6	119.3 (3)	C13—C14—H14	120.1
C4—C5—H5	120.3	C15—C14—H14	120.1
С6—С5—Н5	120.3	C14—C15—C10	119.3 (3)
C5—C6—C1	118.1 (3)	C14—C15—C16	120.5 (3)
C5—C6—C7	130.5 (2)	C10-C15-C16	120.1 (3)
C1—C6—C7	111.4 (2)	C15—C16—H16A	109.5
С9—С7—С6	111.4 (2)	C15—C16—H16B	109.5
C9—C7—C8	121.5 (3)	H16A—C16—H16B	109.5
C6—C7—C8	127.0 (2)	C15—C16—H16C	109.5
N1—C8—C7	123.2 (2)	H16A—C16—H16C	109.5
N1—C8—H8	118.4	H16B—C16—H16C	109.5
С7—С8—Н8	118.4	C8—N1—C10	119.4 (2)
C7—C9—S1	114.5 (2)	O1—N2—O2	123.4 (3)
С7—С9—Н9	122.7	O1—N2—C13	118.3 (4)
S1—С9—Н9	122.7	O2—N2—C13	118.3 (4)
C11—C10—C15	119.9 (2)	C9—S1—C1	91.03 (13)
C6—C1—C2—C3	-0.6 (5)	C10-C11-C12-C13	0.3 (5)
S1—C1—C2—C3	179.6 (3)	C11—C12—C13—C14	1.4 (5)
C1—C2—C3—C4	-0.3 (5)	C11—C12—C13—N2	-179.9 (3)
C2—C3—C4—C5	1.2 (5)	C12—C13—C14—C15	-1.0 (5)
C3—C4—C5—C6	-1.3 (5)	N2-C13-C14-C15	-179.7 (3)
C4—C5—C6—C1	0.3 (4)	C13-C14-C15-C10	-1.2 (5)
C4—C5—C6—C7	-178.2 (3)	C13-C14-C15-C16	-179.7 (3)
C2—C1—C6—C5	0.6 (4)	C11-C10-C15-C14	2.8 (5)
S1—C1—C6—C5	-179.6 (2)	N1-C10-C15-C14	179.9 (3)
C2—C1—C6—C7	179.4 (3)	C11-C10-C15-C16	-178.7 (3)
S1—C1—C6—C7	-0.8 (3)	N1-C10-C15-C16	-1.6 (5)
C5—C6—C7—C9	178.3 (3)	C7—C8—N1—C10	179.7 (3)
C1—C6—C7—C9	-0.3 (4)	C11-C10-N1-C8	-47.3 (5)
C5—C6—C7—C8	-1.9 (5)	C15-C10-N1-C8	135.7 (3)
C1—C6—C7—C8	179.5 (3)	C12—C13—N2—O1	-178.5 (3)
C9—C7—C8—N1	173.7 (3)	C14—C13—N2—O1	0.3 (5)
C6—C7—C8—N1	-6.1 (6)	C12—C13—N2—O2	1.9 (5)
C6—C7—C9—S1	1.3 (4)	C14—C13—N2—O2	-179.3 (3)
C8—C7—C9—S1	-178.5 (3)	C7—C9—S1—C1	-1.5 (3)
C15-C10-C11-C12	-2.4 (5)	C2—C1—S1—C9	-178.9 (3)
N1-C10-C11-C12	-179.4 (3)	C6—C1—S1—C9	1.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	$D -\!\!\!-\!\!\!\!-\!\!\!\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
C5—H5…N1	0.93	2.54	3.093 (4)	118.

Fig. 1